Source code for evennia.server.profiling.memplot

"""
Script that saves memory and idmapper data over time.

Data will be saved to game/logs/memoryusage.log. Note that
the script will append to this file if it already exists.

Call this module directly to plot the log (requires matplotlib and numpy).
"""

import os
import sys
import time

# TODO!
# sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))))
# os.environ['DJANGO_SETTINGS_MODULE'] = 'game.settings'
import evennia
from evennia.utils.idmapper import models as _idmapper

LOGFILE = "logs/memoryusage.log"
INTERVAL = 30  # log every 30 seconds


[docs]class Memplot(evennia.DefaultScript): """ Describes a memory plotting action. """
[docs] def at_script_creation(self): "Called at script creation" self.key = "memplot" self.desc = "Save server memory stats to file" self.start_delay = False self.persistent = True self.interval = INTERVAL self.db.starttime = time.time()
[docs] def at_repeat(self): "Regularly save memory statistics." pid = os.getpid() rmem = ( float(os.popen("ps -p %d -o %s | tail -1" % (pid, "rss")).read()) / 1000.0 ) # resident memory vmem = ( float(os.popen("ps -p %d -o %s | tail -1" % (pid, "vsz")).read()) / 1000.0 ) # virtual memory total_num, cachedict = _idmapper.cache_size() t0 = (time.time() - self.db.starttime) / 60.0 # save in minutes with open(LOGFILE, "a") as f: f.write("%s, %s, %s, %s\n" % (t0, rmem, vmem, int(total_num)))
if __name__ == "__main__": # plot output from the file import numpy from matplotlib import pyplot as pp data = numpy.genfromtxt("../../../game/" + LOGFILE, delimiter=",") secs = data[:, 0] rmem = data[:, 1] vmem = data[:, 2] nobj = data[:, 3] # calculate derivative of obj creation # oderiv = (0.5*(nobj[2:] - nobj[:-2]) / (secs[2:] - secs[:-2])).copy() # oderiv = (0.5*(rmem[2:] - rmem[:-2]) / (secs[2:] - secs[:-2])).copy() fig = pp.figure() ax1 = fig.add_subplot(111) ax1.set_title("1000 bots (normal accounts with light building)") ax1.set_xlabel("Time (mins)") ax1.set_ylabel("Memory usage (MB)") ax1.plot(secs, rmem, "r", label="RMEM", lw=2) ax1.plot(secs, vmem, "b", label="VMEM", lw=2) ax1.legend(loc="upper left") ax2 = ax1.twinx() ax2.plot(secs, nobj, "g--", label="objs in cache", lw=2) # ax2.plot(secs[:-2], oderiv/60.0, "g--", label="Objs/second", lw=2) # ax2.plot(secs[:-2], oderiv, "g--", label="Objs/second", lw=2) ax2.set_ylabel("Number of objects") ax2.legend(loc="lower right") ax2.annotate("First 500 bots\nconnecting", xy=(10, 4000)) ax2.annotate("Next 500 bots\nconnecting", xy=(350, 10000)) # ax2.annotate("@reload", xy=(185,600)) # # plot mem vs cachesize # nobj, rmem, vmem = nobj[:262].copy(), rmem[:262].copy(), vmem[:262].copy() # # fig = pp.figure() # ax1 = fig.add_subplot(111) # ax1.set_title("Memory usage per cache size") # ax1.set_xlabel("Cache size (number of objects)") # ax1.set_ylabel("Memory usage (MB)") # ax1.plot(nobj, rmem, "r", label="RMEM", lw=2) # ax1.plot(nobj, vmem, "b", label="VMEM", lw=2) # # empirical estimate of memory usage: rmem = 35.0 + 0.0157 * Ncache # Ncache = int((rmem - 35.0) / 0.0157) (rmem in MB) # # rderiv_aver = 0.0157 # fig = pp.figure() # ax1 = fig.add_subplot(111) # ax1.set_title("Relation between memory and cache size") # ax1.set_xlabel("Memory usage (MB)") # ax1.set_ylabel("Idmapper Cache Size (number of objects)") # rmem = numpy.linspace(35, 2000, 2000) # nobjs = numpy.array([int((mem - 35.0) / 0.0157) for mem in rmem]) # ax1.plot(rmem, nobjs, "r", lw=2) pp.show()